Strain gradient plasticity under non-proportional loading

نویسندگان

  • N. A. Fleck
  • J. W. Hutchinson
  • J. R. Willis
چکیده

A critical examination is made of two classes of strain gradient plasticity theories currently available for studying micrometre-scale plasticity. One class is characterized by certain stress quantities expressed in terms of increments of strains and their gradients, whereas the other class employs incremental relationships between all stress quantities and the increments of strains and their gradients. The specific versions of the theories examined coincide for proportional straining. Implications stemming from the differences in formulation of the two classes of theories are explored for two basic examples having non-proportional loading: (i) a layer deformed into the plastic range by tensile stretch with no constraint on plastic flow at the surfaces followed by further stretch with plastic flow constrained at the surfaces and (ii) a layer deformed into the plastic range by tensile stretch followed by bending. The marked difference in predictions by the two theories suggests that critical experiments will be able to distinguish between them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guidelines for Constructing Strain Gradient Plasticity Theories

Issues related to the construction of continuum theories of strain gradient plasticity which have emerged in recent years are reviewed and brought to bear on the formulation of the most basic theories. Elastic loading gaps which can arise at initial yield or under imposition of non-proportional incremental boundary conditions are documented and analytical methods for dealing with them are illus...

متن کامل

Ratcheting crystal plasticity modeling in microstructure of magnesium alloy under stress-controlled cyclic tensile loading with non-zero mean stress

Todays, the requirement of lowering the vehicle weight for the reduction of the fuel consumption and emissions, one of the methods considered by designers is to use the ligh magnesium alloy under cylclic loadings. In this article, considering the microstructure of the AZ91D magnesium alloy, its crystalline structure, a model for predicting the ratcheting behavior of this alloy was adapted and v...

متن کامل

Calculating Strain Energy in Multi-Surface Models of Cyclic Plasticity

When considering the development of constitutive equations describing the behavior of materials under cyclic plastic strains, different kinds of formulations can be adopted. The primary intention of this study is to develop computer programming of plasticity models to accurately predict the life of engineering components. For this purpose, the energy or cyclic strain is computed in multi-surfac...

متن کامل

Constitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand

A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...

متن کامل

A Thermodynamics Based Damage Mechanics Framework for Fatigue Analysis of Microelectronics Solder Joints with Size Effects

Experimental observations of an increase in resistance with decreasing specimen size and under the presence of non-uniform plastic deformation fields have pushed the development for small scale plasticity theories since the early 90’s. The observed phenomenon has been explained in terms of an accumulation of a density of geometrically necessary dislocations, which is required in order to accomm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014